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We show that the discrete Gaussian chain with interaction V(r) = 1 / ( r  2 - 1/4) 
is self-dual. At the dual temperature k n T  = 1 we calculate the height-height 
correlation function and find that the system is rough. A duality relation is 
established for the temperature-dependent correlation function exponent ~/. We 
also consider interactions V ( r ) ~  1 / r  n and show that absence of a phase 
transition for 2 < n < 3 implies absence of a phase transition for 1 < n < 2. All 
these results have their counterparts in a linear system of charges interacting 
through a potential which is asymptotically logarithmic (for n = 2) or power- 
law-like (for n v~ 2). 

KEY WORDS: Discrete Gaussian model; long-range interactions; self- 
duality. 

1, I N T R O D U C T I O N  

One-d imens iona l  systems having  interact ions that  decay as 1 / / r  n with 
distance are of par t icular  theoretical interest. A m o n g  them, the Ising model  

is rigorously k n o w n  (1'2) to exhibit  long-range order at sufficiently low 

tempera ture  for n < 2, a n d  not  to have a phase t ransi t ion for n > 2. The  
1 / r  2 Ising model  is a border l ine  case a n d  has received special a t tent ion.  O-7) 

Its behavior  can be analyzed in terms of topological defects which interact  

logarithmically.  In  this respect the model  is similar to the two-d imens iona l  
Cou lomb  gas, which in  tu rn  is connec ted  to the two-dimens ional  X Y  

model  ~8) a n d  the two-dimensional  discrete Gauss i an  model  ~9) (both with 

neares t -ne ighbor  interactions).  
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Recently Cardy (l~ has given a renormalization group analysis of the 
1/r 2 interaction in one-dimensional systems whose site variables have 
access to a finite number of states with arbitrary symmetry. The renormal- 
ization equations for these models indicate a Kosterlitz-Thouless type of 
transition (s) with a correlation length that diverges as the exponential of a 
power when T,I,T c. The examples presented in Ref. 10 are the q-state Potts 
model and the Ashkin-Teller model. 

In this paper we present a number of exact analytic results on a closely 
related system, namely, the discrete Gaussian (DG) chain with interactions 
V(r)~--1/r n. We are able to derive our results by combining, in this new 
context, two transformations that occur in the literature. Firstly we map the 
D G  chain onto a neutral gas of charges via a transformation taken from 
Chui and Weeks. (9) Secondly, we reconvert the gas of charges into a new 
discrete Gaussian chain with potential V'(r ) ~ 1/r  4-n by Cardy's transfor- 
mation. (1~ Since the first transformation interchanges high and low tem- 
peratures, but the second one does not, the net result is an inversion of 
temperature. It follows that absence of a phase transition for 2 < n < 3 
implies absence of a phase transition for 1 < n < 2. In the first case the D G  
chain, viewed as a model for an interface, is rough at all temperatures, and 
in the second case it is smooth at all temperatures. 

For  n = 2 one sees that V(r) and V'(r) have the same large-r behavior, 
and the possibility of self-dual potentials arises. Indeed we find that the 
special potential V*(r) = 1 / ( r  2 - �88 is self-dual. The dual temperature is 

k s T - -  1. (The heuristic Kosterlitz-Thouless argument (s) predicts just this 
value as the critical temperature of the system!) For  the potential V*(r) we 
present the following results: 

With the aid of the unusually strong duality properties we calculate, at 
k B T - -  1, the height-height correlation function. It diverges logarithmically 
with distance, i.e., the system is rough at this temperature. A duality 
relation is derived for the temperature-dependent correlation function expo- 
nent ~/. If it is assumed that the dual temperature kBT = 1 marks the 
transition between a smooth and a rough phase, then it follows that ~/= 1 
for k s T < 1 and that 71 takes the same values as in the continuum Gaussian 
model for kBT > 1. At the dual point itself we have.--whether there is a 
transition or no t - - tha t  7/-- 2, in contrast to the continuum Gaussian value 
7 /=3 .  

2. THE DISCRETE GAUSSIAN MODEL 

We consider a one-dimensional system of N sites labeled i = 1, 
2 . . . . .  N. At each site there is a height variable h i taking the values 
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0, + 1, _ + 2 , . . . .  We take the periodic boundary condition hi+ N = h i.  The 
discrete Gaussian (DG) Hamiltonian %DO is defined by 

%D~ = (1//2) ~ Vu(i  _ j ) ( h  i _ hi)2 (2.1) 
i:~j 

The interaction VN(r) is chosen to satisfy 

Vu(r ) = VN(--r),  Vu(r ) = Vu(r + N )  (2.2) 

and we denote 

V(r) = lim VN(r) (2.3) 
N---~ ~ 

The value of VN(0) is irrelevant and we arbitrarily set VN(O) = 0. Specific 
choices for Vu(r ) will be made later. 

We shall consider the partition function Z D6 defined by 

zDG[ flVN] = ~ - ] ' e - ~ o  (2.4) 
(hi} 

where B ~ (kBTDG) -1 is the inverse temperature. The prime on the sum- 
mation sign indicates that the height variable h N is kept at the fixed value 
h N = O: in this way we avoid that Z ~  ~ becomes infinite due to the 
invariance of ~N ~ 1 7 6  under (h i )  --> {h  i + m) (where m is any integer). This 
condition on the summation in (2.4) will be seen to play an important role. 

In our later discussion we shall need the Fourier transforms VN(k ) and 
A 

h k defined by 

hi= N - ' /2 ~ eikJl~k (2.5) 
k 

Vu(r ) = N - '  E eik'I~U(k) (2.6) 
k 

where the sum is on the wave numbers k = 0 ,  _+2~r/N, _+4~r/N . . . .  , 
_+ (N - 1)~r/N (for N odd) or k = 0, _+ 2~r/N, +_ 4rz /N . . . .  , _+ (N  - 2) 
~r/N, ~r (for N even). The Hamiltonian takes the form 

%DG = ~,  WN ( )hkh_k (2.7) 
k 

where 
A A 

WN(k) = VN(O)-  VN(k ) 

Clearly we have to impose the condition 

WN(k) > 0 for 

to keep ZN ~ from blowing up. 

(2.8) 

k v a 0 (2.9) 
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3. EQUIVALENCE TO A SYSTEM OF INTERACTING CHARGES AND 
SELF-DUALITY 

3.1, Chui and Weeks' Transformation 

In this section we apply to Z ~  c a transformation used by Chui and 
Weeks (9) for the nearest-neighbor discrete Gaussian model. The transfor- 
mation can in fact be used for interactions of arbitrary range and was 
employed by other authors in various different contexts. (1L'12) For the 
present application it is essential that we take account of the subtle 
effects (13'14) due to the finiteness of the system and the condition h N = 0 on 
the summation in (2.4). We recall here only the main steps and refer to 
Appendix A for details. 

The transformation consists in using Poisson's summation formula in 
the expression (2.4). This replaces the summation on the integer-valued 
heights h i by integrations on continuous variables I', and summations on 
new integer-valued variables qi (called charges; q~ = O, +_ 1, +_ 2 . . . .  ). Fou- 
rier transforms p~ and Ok are defined as in (2.5). The partition function then 
takes the form 

ZNDG [ flVN] = {~q~) ( , / 2  d A ( ~  i i  d~ k 
�9 . / - 1 / 2  , J - o e  k 

• exp[2~ri~ (N-1/2A+ O-k)v~-- fl~k W~c(k)'k'-k] 

(3.1) 

Here the occurrence of the X integration is a consequence of the fact that 
the sum in (2.4) is restricted to h N = 0. When carrying out, in (3.1), the 
integrations on 90 and X we find the "charge neutrality condition" ~N= lqi 
= 0. Doing the remaining t3 k integrations we find 

zDG[ flVN] = NI/2C1N/2fl-(N-I)/22'texp[--{ql} [ --fl k~o W-----~) "11"2 Okq-k ] (3.2) 
where the double prime denotes the charge neutrality condition and where 

CN = I'[ rr (3.3) WT(k) 
Reconverting the qh in (3.2) to qi we obtain 

AT1/2t-~l/2~-(N-I)/27CG [ 1 ] ZffG[ flVu] = ~, "-'U t" ~U [ --~ Uu (3.4) 

in which Z c ~  is the partition function for a gas of charges (CG) described 
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by a Hamiltonian ~I~ff: 

1 Uu]=~-~"exp( - -  1 

~ C  C G  = - (1/2) ~] UN(i --j)qiqj (3.6) 
i~j  

in which the charge potential is given by 

2~r 2 1 - cos kr 
UN(r)-- N k~O WN(k) ' r = 1 , 2  . . . . .  N - 1  (3.7) 

The interaction Uu(r), like VN(r), is symmetric and N periodic in r. We 
shall set UN(O ) = 0. Furthermore, we denote 

U(r) = lim UN(r ) (3.8) 
N--> c~ 

Equation (3.4) relates the partition function of the original DG model with 
interaction VN(r ) to the partition function of a gas of charges with potential 
UN(r ). The latter is at inverse temperature (ksTC~ - 1 =  1/fl, and hence 
(3.4) connects high T D~ to low TcG and vice versa. The equations (2.6), 
(2.8), and (3.7) give the connection between UN(r ) and VN(r ). 

In Appendix B we show that in the limit N ~  o0 the long-distance 
behaviors of U(r) and V(r) are related as follows. If 

V(r )~ l / r ' ,  r---> 0% 1 < n < 3 (3.9)' 

then 

W ( k ) ~ k  "-1, k ~ O  (3.10) 

and 

[r n- 2 , r + o o ,  (3.1 la) 2 < n < 3  
U(r)~logr,  r ~  oo, n = 2 (3.11b) 

(uo-Ul/r2-n,  r--->oo, l < n < 2  (3.1 lc) 

where u o and u 1 are positive constants. 

3.2. Cardy's Transformation 

In this section we transform the partition function ZNCC[(1/B)UN] of 
equation (3.5) with the aid of a transformation introduced by Cardy. (l~ 
Cardy's purpose was to express the Hamiltonian of a one-dimensional 
system with site variables taking a finite number of values, and having 1/r 2 
interaction between themselves, in terms of kink variables. Application of 
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the transformation here, in the reversed sense, to the charges qi simply 
amounts to the introduction of new variables l], l 2 . . . .  , l n defined by 

N--1 
l , = -  ~ 4 '  i = l , 2 , . . . , N - 1  (3.12a) 

j=i 
l N = 0 (3.12b) 

The neutrality condition on the charges qi is automatically satisfied and the 
l i (for i v e N) take independently all integer values. This means that in (3.5) 
we may replace the summation ~ "  on the qi by a summation ~ '  on the li, 
where the prime has the same meaning as before. In this way (3.5), (3.6), 
and (3.12) lead to an expression for Z cG as a new discrete Gaussian 
partition function at the same temperature: 

zcG[  --~ 1 UN] = {~/~; exp(-- I ~vDG ) -~ = zDG[ -~ I v~r] (3.13) 

with 

%~v DG = (1/2) ~ V~r i - j ) (  l i - l j  ) 2 
i ~ j  

in which the new interaction V~(r)  is given by 

V;v(r) = - �89 UN(r -- 1) - 2 U N ( r  ) + UN(r + I)], 

(3.14) 

r = l , 2 , . . . , N - 1  

(3.15) 

V~(r)  is symmetric and N periodic. We set V~(0)= 0, and define V'(r)  
= lim~v__>oo Vfv(r). Equation (3.15) shows that if U(r) behaves as in (3.11) for 
large r, then 

V ' ( r ) ~ l / r  4 -"  r---~ oo (3.16) 

3.3. Duality and Self-Duality 

From Eqs. (3.4) and (3.13) we see that the partition functions of the 
two DG models with potentials V u and V~ are related by 

- - --~1 V~ 1 (3.17) Bye] = N'/2C72  

The connection between Vu(r  ) and V~v(r ) is most conveniently expressed in 
terms of their Fourier transforms W u ( k  ) and W[v(k). From (2.8), (3.7), and 
(3.15) we find the duality relation 

4~r2sin2�89 
Wfq(k)- WN(k ) (3.18) 
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It follows that there is a self-dual potential given by 

W~(k)  = 2~r[ sin �89 (3.19) 

We shall indicate all quantities referring to this potential by an asterisk. By 
setting 13 = 1 in (3.17) we find that we must have 

NC~, = 1 (3.20) 

as may also be verified explicitly from (3.3) and (3.19). Letting/3 again be 
general in (3.17) we obtain 

zDG[ /3V~v] -'-= /3-(N-1)/2zDG[ 1 1 V~ (3.21) 

that the DG chain with interaction (3.19) has the dual which shows 
temperature 

/3 = 1 (3.22) 

The spatial representation of the self-dual interaction W~(k) is readily 
obtained as 

( ~r l N )sin( ~r / N ) 
V~v(r)= s i n [ Q r / U ) ( r + l ) ] s i n [ ( ~ r / U ) ( r _ � 8 9  , r = l , . . . , U - 1  

(3.23) 

whence 

1 , r = + 1, + 2 . . . .  (3.24) V*(r) - r2 _ l_ 4 
The charge potential in the equivalent CG model is 

r 

U~(r) = - ~  E cotN(s- �89 r= l  . . . . .  U - 1  (3.25) 
s = l  

whence 

Irl 
V*(r )  = 2 1 s=l s - � 8 9  ' r = _ + l , + _ 2  . . . .  (3.26) 

which for r ~  oo behaves as U*(r)~  21ogr + O(1). Hence we have found a 
D G chain with interaction --~ 1/r  2, and a gas of charges with interaction 
--~ 2 log r, that each satisfy a high-temperature-low-temperature duality and 
have/3 = 1 as their dual point. 

3.4. Absence of Phase Transitions for n :~ 2 

One-dimensional models with interactions decaying as 1//r n, where 
n > 2, are generally expected not to exhibit a phase transition. (1'5) There 
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seems to be no reason why this would not also hold for the D G  chain with 
V(r) "-~ 1//r n and n > 2. We saw in the previous section [Eqs. (3.9) and 
(3.16)], that the potential V ( r ) ~  1//r n is dual to the case V ( r ) ~  1//r 4-n. 
Hence, by (3.17), absence of a phase transition for 2 < n < 3 in the D G  
chain implies that there is no phase transition either in this chain for 
1 < n < 2. We conclude that the D G  chain with interaction 1/r  n, while 
rough at all temperatures when n > 2, is smooth at all temperatures for 
n < 2. The latter result is surprising in that it contrasts with the Ising chain, 
which does have a phase transition for n < 2. For  the equivalent system of 
charges we obtain the corresponding statements by introducing a potential 
U'(r) related to V'(r) in the same way as U(r) is related to V(r). Compari- 
son of U'(r) and U(r) shows that potentials U ( r ) ~  u o - U l  rm have no 
phase transition when - 1 < m < 0 (plasma phase at all temperatures) or 
when 0 < m < 1 (dielectric or dipole phase at all temperatures). 

These considerations bring out that the potentials V ( r ) ~  1//r 2 [or 
U(r) ~ 2log r] are a borderline case. It is the only case where a phase 
transition may occur. We shall discuss the special self-dual potential 
V*(r) = 1 / ( r  2 - �88 in greater detail in the next section. 

4. H E I G H T - H E I G H T  C O R R E L A T I O N S  FOR V(r)= 1//(r 2 -  1//4) 

4.1. The Correlation Function at the Dual Point fl = 1 

The duality expressed by Eqs. (3.17) and (3.18) is unusually strong. 
For  VN(r ) = V}(r) it enables us to find interesting relations between the 
high-temperature and the low-temperature behavior of the height-height 
correlation function, and it allows us in particular to fully calculate this 
quantity at fl = 1. To see this we differentiate (3.17) with respect to WN(k) 
and put W N = W~. This gives 

^ ^ _~ ~ * 1 (4.1) ~(hkh--k)~ "[- <hkh-k>~/B -- 2W~(k)  

Setting fl = 1 we obtain the correlation function at the dual point, 

A ~ 1 (4.2) 
( h k h - k ) ' { -  4W~(k)  

From (2.7) and (4.2) we find for the internal energy of the system 

( % ~ ) ~  = � 88  - 1) (4.3) 
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while Fourier transformation of (4.2) gives the height-height correlation as 

2 " " ( ( h i -  h/+r)2)~ = "~ 2 (l - c o s k r ) ( h k h k ) "  { 
kv~0 

_ 1 U ~ ( r )  (4.4) 
4qr 2 

By (3.26) we have that in the thermodynamic limit N -~  oo 

1 logr, r ~  oo (4.5) ((h i - hi+r)2)~ ~- 2~r-- ~ 

which means that at the dual point the D G  system is rough. 
The exponent , / ( f l )  which is usually associated with a D G  model is 

defined by 

g(r; f l )=exp[ -2~r2 ( (h i  - h i+r)2)#]~l /r  n(#)-I (4.6) 

(where we have taken into account that our system has dimension 1). For  
, / =  1 the height fluctuations ((h i - hi+r)2)# tend to a finite limit as r o  o0 
and the interface is smooth; for any ~ > 1 it is rough. From (4.5) and (4.6) 
we see that for V = V* we have 

g*(r;  1 ) ~ l / r  (4.7a) 

~/(1) = 2 (4.7b) 

It is interesting to remark that the analog of (4.7b) in the continuum 
Gaussian model 3 is that 7/(1) = 3, implying a rougher interface than in the 
D G model. 

4.2. The Correlation Function for General fl 

Duality arguments do not permit to extend the exact result (4.4) for the 
height-height correlation to general/3. However, we can derive interesting 
relations from the duality property (4.1). Since the^large-r behavior of 
g(r; fl) is determined by the small k behavior of ( h k h k )  # we put 

A A 

( h k h _ k ) ~ c ( / 3 ) k  ~(#), as k o 0  (4.8) 

where c(f l )  and a(f i )  are unknown. A calculation analogous to the one of 
the preceding subsection shows that ~ / ( f l )=  1 + 4~rc(fl) if a(f l )  = - 1  and 

3 For the continuum Gaussian,model with the same interaction V}(r) one shows in a 
straightforward manner that (hkh_k) ~ = 1/2flW~v(k) at all ft. 
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I 

1 kB T 

Fig. 1. The exponent ~/as a function of the temperature T ~ T DG of the discrete Gaussian 
model. Dashed line: a possible solution of (4.9) if there is no phase transition. Solid line with 
isolated point at ksT= 1: the solution (4.10) of (4.9) if the DG model has a smooth 
low-temperature phase for k s T < 1. For comparison the dotted line gives the exponent ~/ of 
the continuum Gaussian model. 

~/(fl) = 1 if o(fl)  > - 1. Upon using (3.19) and (4.8) in (4.1) and consider- 
ing the leading terms for k--~ 0 we find for the exponent 7/(fl) the duality 
relation 

fl~l(fl) + f l - l* / ( f l -1)  = 2 + fl + f l -1 (4.9) 

of which (4.7b) is a special case. 
We cannot rule out the possibility that the DG chain with potential 

V*(r) = 1/(r 2 -  1) has no phase transition, in which case (4.9) would be 
satisfied by some analytic ~/(fl), as in Fig. 1. If one assumes, however, that 
the system is in a smooth phase for k 8 T DG ~ 1 (fl  ~ 1), then we have the 
interesting behavior 

f 
l, f l > l  

= 2 ,  */(fl) fl = 1 (4.10) 

1 + 2 / f l ,  f l < l  

which is also shown in Fig. 1. It has the extraordinary feature that above 
criticality (fl  < l) the exponent ~/(fl) has precisely the same value as in the 
continuum Gaussian model (see footnote 3). At criticality 7/gets renormal- 
ized to a value below the continuum Gaussian value, which yields an 
isolated point on the , /(f l)  curve. 
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APPENDIX A 

We give here some details on the transformation leading from (2.4) to 
(3.1)-(3.3). Poisson's summation formula reads (19 

f(hj) = f?o dv j exp(27riqjvj)f(vj) (A1) 
hi= - ~ qj= - oo 

Since the sum in (2.4) is subject to the condition h N = 0 we also use 

f(hu) =-- f(o) = f_2dvev'(VN)f(Vu) 

= / ~ _ ~ d v  u ~., ( 1 / 2  dXexpr2rdvN(qu + X)]f(vi) (A2) 
qN= -- 0r d-- 1/2 

in which the last equality follows from the integral representation of the 
function. We obtain Eq. (3. l) by inserting (A1) and (A2) in (2.4) and using 
(2.7). In (3.1) the integrations on v0 and X are special. Since WN(O ) = 0 they 
read 

f_l/2 ,ix Co~ d~oexp[2~ri(N-'/zx + 0o)9o] 
1/2 J-- oo " " N) 

=f-1/2d~N1/2~(X-l-j~=lqJ-1/2 , (AN) 

= N ~/28o,xy =,q~ (A4) 

The remaining vk integrations in (3.1) are standard Gaussian integrals 
which one can perform (doing the real and the imaginary parts of the v~ 
separately) with the aid of the formula 

/~_~ d x e - a x 2 + i b x = (  ~ ]'/2e-b2/4a (A5) 
oo \ a ]  

As a result (3.1) is converted into (3.2). 

APPENDIX B 

In order to obtain the large-r behavior of U(r) we combine Eqs. (3.7) 
and (3.8) and write 

_- 2~r( ~ 1 -- coskr dk U(r) (B1) 
30 W(k) - 

If V( r ) ~ l / r  n for r---~ oe, then W(k)~wo kn-1 + o(k n-l) for k$O, and the 
integral converges for all n in the interval of interest, viz., 1 < n < 3. 
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For 2 < n < 3, the function 1 / W ( k )  is itself nonintegrable at k = 0, 
and therefore U(r) diverges as r ~ oo. To find the divergence we put kr = x 
and obtain from (B 1): 

U(r) = 2 ~ r n - - 2  fo~rr 1 -- COSX dx (B2) 
WO x n -  I ..1- . . . 

where the dots indicate terms that vanish as r ~ oo. Furthermore, in this 
limit the upper integration bound ~rr may be replaced with oo and the 
integral becomes a constant. Hence (B2) implies the behavior (3.1 la, b). 

For 1 < n < 2, the function 1 / W ( k )  is itself integrable. In this case we 
split (B1) up into two terms. After applying a partial integration to the 
second one we find 

fo ~ dk 2 ~r fo~sin kr d 1 
u ( r )  = w ( t r  + - -  - -  r dk W(k)  dk (B3) 

The first term equals a constant u 0. The large-r behavior of the second term 
is obtained by putting again kr = x and proceeding as before. This leads to 
the behavior (3.11 c). 
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